Teacher Resource for:
Robust self-cleaning surfaces that function when exposed to either air or oil.

Table of Contents:

I. GENERAL USE OF Science in the Classroom
 a. Student Learning Goals (general)
 b. Using this Resource
 i. Learning Lens
 ii. Learning Notes
 iii. References
 iv. Thought Questions
 c. Suggestions for Classroom Use

II. ARTICLE-SPECIFIC MATERIALS
 a. Student Learning Goals (specific)
 b. Connect to Learning Standards
 c. Summary of the Article for the Teacher
 d. Resources for Interactive Engagement
 i. Discussion Questions
GENERAL USE OF Science in the Classroom

Student Learning Goals:
“One fundamental goal for K-12 science education is a scientifically literate person who can understand the nature of scientific knowledge.”

The U.S. National Academy of Sciences defines science as: “Any new finding requires independent testing before it is accepted as scientific knowledge; a scientist is therefore required to honestly and openly report results so that they can readily be repeated, challenged, and built upon by other scientists. Proceeding in this way over centuries, the community effort that we call science has developed an increasingly accurate understanding of how the world works. To do so, it has had to reject all dogmatic claims based on authority, insisting instead that there be reproducible evidence for any scientific claim.”

An important student learning goal, central to any understanding of “the nature of scientific knowledge,” is to give each student an appreciation of how science is done.

This includes knowing why:
• Scientists must be independent thinkers, who are free to dissent from what the majority believes.
• Science can deal only with issues for which testable evidence can be obtained.
• All scientific understandings are built on previous work.
• It is to be expected that one scientist’s conclusions will sometimes contradict the conclusions of other scientists.
• Science is a never-ending venture, as the results from one study always lead to more questions to investigate.

1 A Framework for K-12 Science Education, National Research Council, 2012
Using This Resource

Learning Lens:

The Learning Lens tool can be found on the right sidebar of each resource and is the source of annotations. Click on the headings to highlight portions of the text of the corresponding research article. A subsequent click on the highlighted text will produce a text box containing more information about that particular piece of text. Below is an example of the Glossary function of the Learning Lens.

An example of the resource with the Glossary, Previous Work, Author’s Experiments, News and Policy Links, and References and Notes tools turned on. The Glossary tool is in use.
Learning Notes:

Learning Notes accompany each figure and are designed to help students deconstruct the methods and data analysis contained within each figure.

Fig. 1. Spatial distribution of head scales. (A) Head scales in most snakes (here, a corn snake) are polygons (two upper panels) with stereotyped spatial distribution (two lower panels); left (yellow) and right (red) scale edges overlap when reflected across the sagittal plane (blue). (B) Polygonal head scales in crocodiles have a largely random spatial distribution without symmetrical correspondence between left and right. (C) Head scales from different individuals have different distributions of scales' sizes and localizations (blue and red edges from top and bottom crocodiles, respectively).

Method: 3D geometry and color-texture reconstruction

The authors took 120 color pictures of each animal to create detailed, three-dimensional models of reptile heads. Watch this video in which the authors further explain their modeling methods:

http://www.sciencemag.org/content/suppl/2012/11/29/science.1226265.DC1/1....
References:

The Reference section of each resource is annotated with a short statement about how or why each reference relates to the current research study.
Thought Questions

Thought Questions are located above the Learning Lens in the right sidebar of each resource. These questions were written to be universal and applicable to any primary research paper. Thought questions do not have a single answer, or a correct answer for that matter, and can be used to stimulate discussion among students.
Suggestions for Classroom Use:

In addition to the thought questions discussed above, other resources are provided for use in the classroom. These can be found toward the end of the teacher guides associated with each specific article and include:

1. Discussion questions specific to the article, related to the standards, and/or associated with the figures.
2. Activities tied to the articles.

Some ways to use the *Science* in the Classroom articles:

1. Assign to student groups to read and discuss during class.
2. Assign small sections of the article to student groups to read and discuss during class, with the expectation that they will present or use jigsaw to teach the entire class what is in their part of the article.
3. Assign to individual students to complete during class or as homework.
4. Assign reading as an extra credit project.

Some ideas for interactive student engagement after reading the article:

1. Students write answers to discussion questions (for example, those linked to the standards or those linked to the diagrams).
2. Go over the abstract, as well as information about the purpose and structure of an abstract, and have students write their own abstracts for the articles in language that could be understood by their peers.
3. Have students edit the article, or parts of the article, to a simpler reading level.
4. Have students, alone or in small groups, use the annotated list of references to explain how the scientists who wrote this article built on the published work of at least one independent group of scientists in making their discoveries. In the process, did they produce data that supports the findings of the earlier publication that they have cited in the text? In what way does this article support the statement that scientific knowledge is built up as a “community effort”?
5. Use the article and discussion questions linked to the standards and the diagrams for a teacher-led classroom discussion. The discussion can focus on the nature of science and scientific research, as well as on the science in the article itself.

6. Have students give a classroom presentation about the article, parts of the article, or their answers to discussion questions.
ARTICLE-SPECIFIC MATERIALS

Connections to the nature of science from the article

- Chemical properties can be exploited to create novel, functional materials
- Designing an experiment to test a hypothesis

The importance of this scientific research

- Creating robust superhydrophobic materials has applications beyond self-cleaning surfaces (medical, military, etc.)

The actual science involved

- Microscopy (SEM, TEM, XRD, XPS)
- Intermolecular forces (attraction, repulsion, adhesion, cohesion, etc.)
- Chemical properties
- Hydrophobicity
Connect to Learning Standards:

Common Core English Language Arts

- Common Core English Language Arts Standards, 11-12.1: Note that citations in science and engineering usually do not cite verbally, i.e., "bla bla bla [...] bla bla," but with regard to content only. Yet integrity demands to correctly state the sources of the information provided in the text. Otherwise the impression could arise that everything was done and found by the current authors, even though someone else has made the discovery.

- Common Core English Language Arts Standards, 11-12.4: Whenever you want to use an acronym later on in the text, you first have to define what it stands for, even if it might be very plausible to you, because you have been using it for a long time. Others might not know and need this information. Once defined, (here: "paint + spray adhesive"—treated), the acronym PSAT can be used from there-on throughout the article. Some people use the acronym also in their figures, others don't to help readers who only scan the article and figures.

Next Generation Science Standards

- Science and Engineering Practice 1: Asking Questions and Defining Problems. A practice of science is to ask and refine questions that lead to descriptions and explanations of how the natural and designed world works and which can be empirically tested.

- Science and Engineering Practice 4: Analyzing and Interpreting Data. Scientific investigations produce data that must be analyzed in order to derive meaning. Because data patterns and trends are not always obvious, scientists use a range of tools—including tabulation, graphical interpretation, visualization, and statistical analysis—to identify the significant features and patterns in the data. Scientists identify sources of error in the investigations and calculate the degree of certainty in the results. Modern technology makes the collection of large data sets much easier, providing secondary sources for analysis.
Summary of the Article for the Teacher:
It is recommended that this not be used by students in place of reading the article.

General Overview:

Lu et al. have created a compound that improves upon traditional superhydrophobic surfaces. In the past, these surfaces have been based on nano- or micro-morphologies, and have been weak. Additionally, they do not stand up to exposure to oils. Lu’s new compound can be applied like paint by spraying, dipping, or extruding it onto both hard and soft materials. The result is a robust self-cleaning surface that stands up to both mechanical pressure and oil.

Topics Covered:

- Intermolecular forces
- Microscopy and imaging
- Properties of surface topography

Methods used in the Research:

- Scanning Electron Microscopy (SEM)
- Transmission Electron Microscopy (TEM)
- X-ray photoelectron spectroscopy (XPS)
- X-ray diffraction (XRD)
- Time-lapse photography

Conclusions:

This paper improves upon previous methods of creating self-cleaning (superhydrophobic) surfaces. Previously, these surfaces have been created by using nano- or micro-morphologies, which are vulnerable to mechanical forces and would not function in the presence of oil. Lu et al. have essentially created a paint with similar properties that can be applied to more robust surfaces. Because it can be applied by spraying or dipping, it is more versatile and durable than traditional superhydrophobic surfaces.
Areas of Further Study:

- What are the applications of superhydrophobic surfaces?
- Are there any environmental considerations?
- Is it possible to apply the principles of hydrophobicity to repel other substances? What would need to be changed to repel something else?
Resources for Interactive Engagement:

Discussion Questions

1. What is the goal of this study?

2. Why is this study important?

3. What are some possible applications of superhydrophobic surfaces?